MET Performance in 2012 Run A CMS Data

A. Apresyan, K. Hatakeyama, C. Veelken, M. Marionneau

Abstract

This note includes plots indicating the current state of the MET performance in 2012 for Data and MC.
MET Performance in 2012 Run A CMS Data

CMS Collaboration
Content

• Detailed studies of the performance of the Missing Transverse Energy (MET) reconstruction are published in [1]

• In this note we present studies of the MET performance in the $\sqrt{s} = 8$ TeV dataset collected by CMS in Spring 2012 (2012 Run A), corresponding to 0.7 fb$^{-1}$ (the integrated luminosity of the full 2012 ICHEP dataset = 5.1 fb$^{-1}$; the full dataset has on average higher pile-up (PU) multiplicities)
 – Comparison of MET distributions in data with simulation in events with $Z \rightarrow \mu \mu$
 – MET resolution and response in $Z \rightarrow \mu \mu$ events as a function of pile-up multiplicity and the Z boson transverse momentum q_T

• Results presented in this note extend Study of MET performance in 2011 data documented in [2]
Comparing 2011 and 2012 data

NOTE: when comparing MET resolution in 2011 and 2012 data, it is important to keep in mind that not only PU conditions changed, but also

• Improved the ECAL and HCAL energy reconstruction to reduce the effects of out-of-time pileup interactions
 • HCAL: 100ns time window in 2011, 50ns time window in 2012.
 • ECAL: Reject out-of-time energy deposits not only in the barrel but also in the endcap

• Specific MET corrections against PU applied in 2012 ("Type-0" and "systematic x/y shift" corrections)
Z→μμ event selection

• Ideal test-bed to study the MET resolution
 – Clean final state, small background contributions
 – No intrinsic MET, only resolution effects

• Data is collected using double-muon triggers
 – Muons are required to satisfy the identification criteria listed in [3]
 – Two OS muons within |η|<2.1, P_T^μ>20 GeV, and 60<$M_{\mu\mu}$<120 GeV

• At least one of the muons isolated, isolation corrected for PU effects
 – $I_\mu=\sum P_T^{charged}(\Delta z<2\text{mm})+\max(P_T^{h0}+P_T^\gamma-\Delta\beta, 0)$; where $\Delta\beta=0.5\sum P_T^{charged}(\Delta z>2\text{mm})$
 – Isolation requirement: $I_\mu<0.10\cdot P_T^\mu$

• The composition of the data samples is estimated using MC samples
 – MadGraph5 samples for Z→μμ, tt and di-boson (WW, WZ, ZZ)
 – PYTHIA6.4 samples for QCD multi-jet production
Event reconstruction

- Events are reconstructed with the Particle Flow technique [4]
 - MET computed as the negative vectorial sum of all particles candidates

- MET reconstructed in simulated samples is corrected for JES:

\[
E_x^{\text{corr}} = E_x^{\text{raw}} + \Delta_x \\
E_y^{\text{corr}} = E_y^{\text{raw}} + \Delta_y \\
E_T^{\text{corr}} = \sqrt{E_x^{\text{corr}}^2 + E_y^{\text{corr}}^2}
\]

\[\Delta_i = \sum P_i^{\text{calibrated}} - P_i\]

- \(i=x, y\), and the sum extends over all jets with JES corrected momenta \(P_T > 10\text{ GeV}\).
 - Jet energies are corrected by applying \textit{L1Fastjet}, \textit{L2} and \textit{L3} corrections [5]

- Events containing signatures of instrumental noise are rejected from the analysis, as described in [1]
PU multiplicities in 2012 compared to 2011

- About 30% increase in PU in 2012 Run A compared to end of 2011 data-taking (2011 Run B)
 - Simulated events are reweighted to match PU in data
 - We use a “3D reweighting” to match the PU distributions in the colliding bunch, as well as the previous and next bunches (for out-of-time PU)
- Larger difference in PU multiplicity for full 2012 wrt. full 2011 dataset
• MET distributions agree well between data and simulation
 – Simulation is corrected for jet energy scale. Additionally, jet energy resolution in simulation is smeared to match that observed in data [5].
• Small degradation in Resolution due to PU
MET response and resolution in $Z \rightarrow \mu \mu$

- The momentum of the Z boson is denoted as q_T
- The transverse momentum Σ of all particles’ P_T except the boson: u_T
 - In a perfectly measured event u_T would balance transverse momentum of the Z
 - $\vec{q}_T + \vec{u}_T + \vec{E}_T = 0$

- Determine the MET scale and resolution
 - The mean of the distribution of $-u||/q_T$ is a measure of the MET response
 - The RMS widths of $-u||-q_T$ and u_\perp are used to measure the MET resolution
Recoil measured in $Z \rightarrow \mu\mu$ events

Parallel and perpendicular recoil components agree well with the simulation.
MET response in $Z\rightarrow\mu\mu$ events

CMS preliminary, $\sqrt{s}=8$ TeV $L = 0.7$ fb$^{-1}$

- MET response is close to unity after Type 1 MET corrections
 - \sim1-2% overestimation of the response is expected: larger fraction of quark jets than in the sample used to derive the JES corrections
MET resolution VS NVtx in $Z \rightarrow \mu \mu$ events

- Resolution for fixed NVtx is better in 2012A due to changes in energy reconstruction (see page 3)
- The distributions are fitted to extract σ_{PU} which represents the degradation in resolution caused by PU events
 - PU introduces an additional smearing of \sim2.5-3.5 GeV on MET resolution (in quadrature)
 - The "c" component of the fit represents average resolution in events with no PU
References